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Chapter 27

Local definitions

For this chapter, switch languages in DrRacket to “Intermediate Student Language” or
higher.

27.1 Using locals for efficiency

Suppose we wanted to write a function smallest to find the smallest of a list of numbers.
A straightforward solution, based on what you’ve already seen, would be

; smallest: non-empty-list-of-numbers -> number

(check-expect (smallest (list 4)) 4)

(check-expect (smallest (list 4 7)) 4)

(check-expect (smallest (list 7 4)) 4)

(check-expect (smallest (list 6 9 4 7 8 3 6 10 7)) 3)

(define (smallest nums)

(cond [(empty? (rest nums)) (first nums)]

[(cons? (rest nums))

; (first nums) number

; (rest nums) non-empty list of numbers

; (smallest (rest nums)) number

(cond [(<= (first nums) (smallest (rest nums)))

(first nums)]

[else (smallest (rest nums))])]))

This definition works, and produces right answers, but consider the following two
examples:

(check-expect

(smallest (list 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18))

1)

(check-expect

(smallest (list 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1))

1)

On my computer (as of 2009), the former takes about 3 milliseconds; the latter takes
almost 9 seconds — 3000 times longer, even though both examples find the smallest of
the same set of numbers! What’s going on?

To figure this out, let’s pick some simpler examples:
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396 CHAPTER 27. LOCAL DEFINITIONS

(check-expect (smallest (list 1 2 3 4)) 1)

(check-expect (smallest (list 4 3 2 1)) 1)

and use the Stepper to see what’s happening. The former example calls

(smallest (list 1 2 3 4))

(smallest (list 2 3 4))

(smallest (list 3 4))

(smallest (list 4))

return 4

return 3

return 2

return 1

The latter example behaves differently:

(smallest (list 4 3 2 1))

(smallest (list 3 2 1))

(smallest (list 2 1))

(smallest (list 1))

return 1

(smallest (list 1)) again!

return 1

(smallest (list 2 1)) again!

(smallest (list 1)) a third time!

return 1

(smallest (list 1)) a fourth time!

return 1

return 1

(smallest (list 3 2 1)) again!

(smallest (list 2 1)) a third time!

(smallest (list 1)) a fifth time!

return 1

(smallest (list 1)) a sixth time!

return 1

(smallest (list 2 1)) a fourth time!

(smallest (list 1)) a seventh time!

return 1

(smallest (list 1)) an eighth time!

return 1

return 1

return 1

return 1

In other words, the function is calling itself on the exact same question over and over,
wasting a lot of time. Any time that (first nums) is larger than (smallest (rest

nums)), it calls (smallest (rest nums)) all over again.

How can we avoid this waste of time? One reasonable approach is to compute
(smallest (rest nums)), save the result in a variable, then use that result twice with-
out re-computing it. Unfortunately, the syntax rules we’ve seen so far don’t allow us to
define a variable inside a function definition.

There is a way to do it, however.
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Syntax Rule 8

(local [definition definition ...]

expression )

is an expression. Each definition can be a variable definition (rule 4), a function definition
(rule 5), or a struct definition (rule 7).

The effect is to apply all the definitions temporarily, evaluate the inner expression, and
then forget all the new definitions; the result is the value of the inner expression.

Here’s a simple, unrealistic example:

(local [(define y 5)]

(* y y)) ; returns 25

y ; produces an error message, because y is undefined

In fact, a “local” definition can temporarily hide a definition that’s already in effect:

(define y 17)

y ; returns 17

(local [(define y 5)] (* y y)) ; returns 25

y ; returns 17 again

More realistically, the main reason people use local is to define a variable inside a
function definition:

; smallest: non-empty-list-of-numbers -> number

(check-expect (smallest (list 4)) 4)

(check-expect (smallest (list 4 7)) 4)

(check-expect (smallest (list 7 4)) 4)

(check-expect (smallest (list 6 9 4 7 8 3 6 10 7)) 3)

(define (smallest nums)

(cond [(empty? (rest nums)) (first nums)]

[(cons? (rest nums))

; (first nums) number

; (rest nums) non-empty list of numbers

; (smallest (rest nums)) number

(local [(define winner (smallest (rest nums)))]

(cond [(<= (first nums) winner) (first nums)]

[else winner]))]))

Now both of the examples

(check-expect

(smallest (list 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18))

1)

(check-expect

(smallest (list 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1))

1)

run in about 3 milliseconds on my computer; we’ve sped up the latter by a factor of 3000.

Exercise 27.1.1 Re-write the spams function from Exercise 24.4.5 using local to call
itself only once. Does it work correctly? Is it significantly faster?



398 CHAPTER 27. LOCAL DEFINITIONS

Exercise 27.1.2 Re-write the copies function from Exercise 24.4.2 or 24.4.6 by using
local to call itself only once. Does it work properly? Is it significantly faster?

Exercise 27.1.3 Re-write the dot-grid function from Exercise 24.4.8 using local to
call itself only once. Does it work properly? Is it significantly faster?

Exercise 27.1.4 Re-write the randoms function from Exercise 24.4.9 using local to
call itself only once. Does it work correctly? Is it significantly faster?

Exercise 27.1.5 Consider the functions binary-add1 from Exercise 24.4.3, binary-add
from Exercise 25.4.9, binary-mult from Exercise 25.4.10, and binary-raise from Ex-
ercise 25.4.11. Which of these (if any) would benefit from this treatment? Why?

27.2 Using locals for clarity

Consider a distance function that takes in two posns and computes the distance between
them:

; distance : posn posn -> number

(check-expect (distance (make-posn 3 5) (make-posn 3 5)) 0)

(check-expect (distance (make-posn 3 5) (make-posn 6 5)) 3)

(check-expect (distance (make-posn 3 5) (make-posn 3 -10)) 15)

(check-expect (distance (make-posn 3 5) (make-posn 6 9)) 5)

(check-within (distance (make-posn 3 5) (make-posn 4 4)) 1.41 .1)

(define (distance here there)

(sqrt (+ (* (- (posn-x here) (posn-x there))

(- (posn-x here) (posn-x there)))

(* (- (posn-y here) (posn-y there))

(- (posn-y here) (posn-y there))))))

This passes all its tests, and it’s reasonably efficient, but the definition is long, compli-
cated, and hard to read. The formula computes the difference of x coordinates, squares
that, computes the difference of y coordinates, squares that, adds the squares, and square-
roots the result.

It would arguably be easier to read if we had names for “the difference of x coordi-
nates” and “the difference of y coordinates”. We can do that with local:

(define (distance here there)

(local [(define xdiff (- (posn-x here) (posn-x there)))

(define ydiff (- (posn-y here) (posn-y there)))]

(sqrt (+ (* xdiff xdiff) (* ydiff ydiff))))
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The expression on the last line is much shorter and clearer: one can easily see that
it’s the square root of the sum of two squares. (It may also be slightly more efficient, but
not the dramatic improvement we saw for smallest above.)

Exercise 27.2.1 Develop a function rotate-colors that takes in an image and (us-
ing map-image) creates a new image whose red component is the old green component,
whose green component is the old blue component, and whose blue component is the old
red component. Use local to give names to the old red, green, and blue components.

Exercise 27.2.2 What other functions have you written that would benefit from this
technique? Try rewriting them and see whether they’re shorter and clearer.

27.3 Using locals for information-hiding

Another approach to making smallest more efficient would have been to write a helper
function smaller:

; smaller : number number -> number

; returns the smaller of two numbers

(check-expect (smaller 3 8) 3)

(check-expect (smaller 9 7) 7)

(check-expect (smaller 2 2) 2)

(define (smaller a b)

(cond [(<= a b) a]

[else b]))

(define (smallest nums)

(cond [(empty? (rest nums)) (first nums)]

[(cons? (rest nums))

( smaller (first nums) (smallest (rest nums)))]))

This definition, too, calls itself recursively only once, so it doesn’t have the efficiency
problems of the first version above. But it requires a helper function, which may be of no
use in the rest of the program.

As mentioned above, you can also define a function, or even a struct, locally. So if we
wanted, we could hide the definition of smaller inside that of smallest:

(define (smallest nums)

(local [(define (smaller a b) (cond [(<= a b) a] [else b]))]

(cond [(empty? (rest nums)) (first nums)]

[(cons? (rest nums))

(smaller (first nums) (smallest (rest nums)))])))

I recommend moving smaller into a local definition only after you’ve tested and de-
bugged it as usual.
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Suppose you were hired to write a sort function like that of Exercise 23.6.1. It needed
a helper function insert which inserts a number in order into an already-sorted list of
numbers. But “insert” is a fairly common word, and your customer might want to write
a function by the same name herself, which would be a problem because DrRacket won’t
allow you to define two functions with the same name. So again, one could hide the
insert function inside the definition of sort:

(define (sort nums)

(local [(define (insert num nums) ...)]

(cond [(empty? nums) empty]

[(cons? nums)

(insert (first nums) (sort (rest nums)))])))

For another example, the wn-prime? function of Exercise 24.3.8 needed a helper
function not-divisible-up-to?, which nobody would ever want to use unless they were
writing a prime-testing function. So after you’ve tested and debugged both functions,
you can move the definition of not-divisible-up-to? function inside the definition of
wn-prime?:

(define (wn-prime? num)

(local [(define (not-divisible-up-to? m n) ...)]

(not-divisible-up-to? num (- num 1))))

For one more example, recall exercise 11.5.1, a road-trip-cost function which de-
pended on six other functions: gas-cost, cost-of-gallons, gas-needed, motel-cost,
nights-in-motel, and rental-cost. Any of those other functions could conceivably be
useful in its own right, but suppose we knew that they wouldn’t be used on their own. It
would still be useful to write and test the functions individually, but once they all work,
they (and the constants) could be hidden inside the definition of road-trip-cost:
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(define (road-trip-cost miles days)

(local [ (define MPG 28)

(define PRICE-PER-GALLON 2.459)

(define MOTEL-PRICE-PER-NIGHT 40)

(define CAR-RENTAL-FIXED-FEE 10)

(define CAR-RENTAL-PER-DAY 29.95)

(define CAR-RENTAL-PER-MILE 0.10)

(define (gas-needed miles)

(/ miles MPG))

(define (cost-of-gallons gallons)

(* PRICE-PER-GALLON gallons))

(define (gas-cost miles)

(cost-of-gallons (gas-needed miles)))

(define (nights-in-motel days)

(- days 1))

(define (motel-cost days)

(* MOTEL-PRICE-PER-NIGHT (nights-in-motel days)))

(define (rental-cost miles days)

(+ CAR-RENTAL-FIXED-FEE

(* days CAR-RENTAL-PER-DAY)

(* miles CAR-RENTAL-PER-MILE))) ]

(+ (gas-cost miles)

(motel-cost days)

(rental-cost miles days))))

Of course, since each of the helper functions is called only once, there’s not much
point in defining them as functions at all. For this problem, it would be simpler and more
realistic to define them as variables instead:

(define (road-trip-cost miles days)

(local [(define MPG 28)

(define PRICE-PER-GALLON 2.459)

(define MOTEL-PRICE-PER-NIGHT 40)

(define CAR-RENTAL-FIXED-FEE 10)

(define CAR-RENTAL-PER-DAY 29.95)

(define CAR-RENTAL-PER-MILE 0.10)

(define gas-needed (/ miles MPG))

(define gas-cost (* PRICE-PER-GALLON gas-needed))

(define motel-cost (* MOTEL-PRICE-PER-NIGHT (- days 1)))

(define rental-cost

(+ CAR-RENTAL-FIXED-FEE

(* days CAR-RENTAL-PER-DAY)

(* miles CAR-RENTAL-PER-MILE)))]

(+ gas-cost motel-cost rental-cost)))

We’re now using local partly for information-hiding (it’s a convenient place to put
the constants PRICE-PER-GALLON, MPG, etc. without the rest of the program seeing those
names) and partly for clarity (gas-needed, gas-cost, etc. are just intermediate steps in
calculating the answer).
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27.4 Using locals to insert parameters into functions

In all of the above examples, we’ve written helper functions as usual, tested and debugged
them, then moved them into local definitions inside the main function. In this section,
we’ll see problems for which the helper function must be defined locally inside another
function — it doesn’t work by itself.

Worked Exercise 27.4.1 Modify the solution to Exercise 7.8.12 so the amount of blue
increases smoothly from top to bottom, regardless of the height of the image.

Solution: The apply-blue-gradient function will use the map-image function, which
requires a function with the contract

; new-pixel : number(x) number(y) color -> color

Let’s write some examples of this function. We’ll want one at the top of the image, one
at the bottom, and one in between. The one at the top is easy:

(check-expect (new-pixel 40 0 (make-color 30 60 90))

(make-color 30 60 0))

But how can we write an example at the bottom or in between when we don’t know how
tall the given image is?

Let’s pretend for a moment the image was 100 pixels tall. Then we would choose
examples

(check-expect (new-pixel 36 100 (make-color 30 60 90))

(make-color 30 60 255))

(check-expect (new-pixel 58 40 (make-color 30 60 90))

(make-color 30 60 102))

because 40 is 40% of the way from top to bottom, and 102 is 40% of the way from 0 to
255. The function would then look like

(define (new-pixel x y old-color)

; x a number

; y a number

; old-color a color

(make-color (color-red old-color)

(color-green old-color)

(real->int (* 255 (/ y 100)))))

(define (apply-blue-gradient pic)

; pic an image

(map-image new-pixel pic))

This works beautifully for images that happen to be 100 pixels high. To make it work
in general, we’d like to replace the 100 in the definition of new-pixel with (image-height

pic), but this doesn’t work because new-pixel has never heard of pic: pic won’t even
be defined until somebody calls apply-blue-gradient. As a step along the way, let’s
define a variable pic directly in the Definitions pane:
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(define pic (ellipse 78 100 "solid" "green"))

(check-expect (new-pixel ...) ...)

(define (new-pixel x y old-color)

(make-color (color-red old-color)

(color-green old-color)

(real->int (* 255 (/ y (image-height pic))))))

(map-image new-pixel pic)

Now we can run the check-expect test cases for new-pixel, and also look at the result
of the map-image to see whether it looks the way it should. But it still doesn’t work in
general.

So we’ll get rid of the pic variable, comment out the check-expect test cases, and
move the definition of new-pixel inside the apply-blue-gradient function:
(define (apply-blue-gradient pic)

; pic an image

(local [(define (new-pixel x y old-color)

(make-color (color-red old-color)

(color-green old-color)

(real->int (* 255 (/ y (image-height pic))))))]

(map-image new-pixel pic)))

Note that when the variable name pic appears in new-pixel, it refers to the parameter
of apply-blue-gradient.

Try this definition of apply-blue-gradient on a variety of pictures of various sizes.

A disadvantage of writing a function inside another function is that you can’t test
an inner function directly, so I recommend the process above: define global variable(s)
for the information from the outer function that the inner function needs, test the inner
function in the presence of these variables, and once it passes all the tests, move the inner
function inside a function with parameters with the same names as those variables (and
now you can get rid of the global variables).

Exercise 27.4.2 Develop a function add-red that takes in a number and an image,
and adds that number to the red component of every pixel in the image. (Remember to
keep the red component below 256.)

Exercise 27.4.3 Develop a function substitute-color that takes in two colors and
an image, and replaces every pixel which is the first color with the second color.

Exercise 27.4.4 Develop a function horiz-stripes that takes in a width, a height,
a stripe width, and two colors, and produces a rectangular image of the specified width
and height with horizontal stripes of the specified width and colors.

Exercise 27.4.5 Develop a function smooth-image that takes in an image and re-
places each color component of each pixel with the average value of that color component
in the pixel and its four neighbors (up, down, left, and right).

Hint: Use the get-pixel-color function to get the values of the neighboring pixels.
Use another local to give names (e.g. up, down, left, and right) to these values, for
clarity.
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You’ll need to decide what to do at the borders. The easiest answer is to just call
get-pixel-color even though the position may be outside the borders; it will return
black in that case, so the resulting picture will have darkened edges. A more proper, and
more difficult, solution is to average together only the neighboring pixels that actually
exist. This will probably require two or three helper functions and a list of neighboring
colors. These helper functions will also help you with Exercise 27.4.8.

A “higher-order function” is a function that takes in functions as parameters, and/or
returns a function as its value. (We’ll learn how to write such functions in Chapter 28.)
Some examples are map3-image, build3-image, map-image, and build-image. We’ve
seen how to write a function that (locally) defines another function from its parameters,
then passes that new function as an argument to a higher-order function.

What other higher-order functions have we seen? How about on-tick, on-draw,
on-key, on-mouse, etc.? The same technique now allows us to write a function that uses
its parameters to construct event handlers and run an animation on them.

Exercise 27.4.6 Recall Exercise 6.5.2, which placed a stick-figure at a fixed location on
a background scene and had the stick figure turn upside-down every second or so.

Develop a function flipping-figure that takes in a background scene and the x

and y coordinates where you want the figure to be, and runs an animation with the figure
flipping upside-down every second or so at that location on that background.

Hint: Define a redraw handler locally, using the specified background scene, and then
call big-bang inside the body of the local.

Exercise 27.4.7 Develop a function add-dots-with-mouse that takes in a color and
a number, and runs an animation that starts with a white screen, and every time the mouse
is clicked, adds a circular dot of the specified color and radius at the mouse location.

Exercise 27.4.8 Look up John Conway’s “Game of Life” on the Web (e.g. Wikipedia).
Develop a function life-gen that takes in an image representing a grid of cells

(think of the color white as “dead” and any other color as “alive”), and produces the
grid of cells one generation later. If a pixel has fewer than two or more than three
“live” neighbors (from among its eight neighbors — above, below, left, right, and the four
diagonals), it dies. If it has exactly two, it stays the same as it was (alive or dead). If it
has exactly three, it becomes alive (or stays alive, if it already was). You may want to use
another local to give names to the eight neighboring pixels, or to a list of their colors,
or something.

Define an animation with life-gen as its tick handler.
Start it with a random image (see Exercise 15.3.3) as the initial model.
If you want more control over the animation, recall that big-bang returns its final

model. Try starting this “life” animation with the result of add-dots-with-mouse (see
Exercise 27.4.7).

SIDEBAR:

Most programming languages allow you to define local variables. Some (like Java
and Pascal) allow you to define local structs and functions. Some of these allow you
to write a function whose parameters are then inserted into locally-defined functions,
although they require more complicated syntax and put extra restrictions on what
you can do with these parameters. Racket makes this stuff easier than any other
language I know of.
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27.5 Review of important words and concepts

Racket (like most programming languages) allows you to define variables locally : you
introduce a new variable, work with it for a little while, and then forget it. This is used
for four common reasons:

• for efficiency: suppose a function calls itself more than once on the same argu-
ment(s). We call it only once, store the result in a local variable, and use the
variable more than once.

• for clarity: suppose a particular long expression, an intermediate step in computing
a function, appears several times in the function definition. Define a local variable to
hold the result of that expression, and the resulting definition may be significantly
shorter and easier to understand.

• for information-hiding: suppose a constant, struct, or function is only needed within
a particular function, especially if it has a common name that somebody might want
to use somewhere else in a large program. Define it locally, use it in this function
as many times as you want, and be confident it won’t conflict with or be confused
with things by the same name defined elsewhere.

• for defining functions that can be passed to a higher-order function like build-image,
map-image, on-draw, etc. In particular, the ability to define a function inside an-
other function, using the parameters of the outer one, enables you to do image
manipulations and animations that you couldn’t do before. We’ll see another way
to do this in Section 28.6.

27.6 Reference: New syntax for local definitions

This chapter introduced one new syntax rule, Rule 8 introducing local definitions of
variables, functions, and even structs.


